Summary

Stanford AI PhD developing next-generation sequence model architectures that bridge theoretical insights with practical applications. I adapt quickly across domains, from language modeling to time-series forecasting to healthcare. Every project I've led, across Citadel, AWS AI, and my own research, began in new territory and ended with practical advances. I move fast, think deeply, and do my best work when tackling open-ended problems. I'm looking for a team advancing the capabilities of next-generation AI, turning breakthroughs into products that change how people live and work.

Education

2020–2025	PhD Computer Science , <i>Stanford University</i> , Stanford, CA, GPA: 4.0, Advised by Emily B. Fox. I develop efficient sequence models with applications to language modeling and real-world longitudinal health data
2018–2020	MS Computer Science, Cornell University, Ithaca, NY, GPA: 4.0.
2014–2018	BA Triple major: Computer Science, Math, Physics, Cornell University, Ithaca, NY, GPA: 3.9.
	Select publications (see Google Scholar for others)
In review	Test-time regression: a unifying framework for designing sequence models with associative memory. A new way of understanding sequence models, like Transformers and SSMs, and derives new model architectures, including higher-order generalizations of self-attention.
ICML 2023	Sequence Modeling with Multiresolution Convolutional Memory.
	State-of-the-art architecture for sequences using $O(L \log L)$ memory, outperforming Transformers and S4
	Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild. Unsupervised, non-invasive, diabetes subtyping for noisy and missing real world CGM and meal data
ICLR 2022	Is Importance Weighting Incompatible with Interpolating Classifiers?. A new loss function that makes large neural networks more robust to data distribution shifts
NeurIPS 2020 Spotlight	Simplifying Lagrangian and Hamiltonian Neural Networks via Explicit Constraints. A more accurate and data-efficient way to learn physics from dynamics data
NeurIPS 2019	Exact Gaussian Processes on a Million Data Points.
	Make Gaussian processes usable on 100x larger datasets than before using multi-GPU acceleration
	Experience
Summer 2024	Quantitative Researcher Intern , <i>Citadel GQS</i> , New York City, NY. • Developed alternative alpha strategies using large-language models (LLMs); text-processing, backtesting, evals
Summer 2021	 Applied Research Scientist Intern, Forecasting, Amazon AWS AI, Palo Alto, CA. Proposed a new approach to continuous time series forecasting using graph neural networks and neural ODEs Developed GPU-optimized temporal point process models for scalable training on discrete event time series Published findings at NeurIPS 2021 ICBINB Workshop as a spotlight paper

Summer 2018 NLP Research Engineer Intern, Nuance (acquired by Microsoft for \$20B), Greater Boston, MA.

o Built and trained Transformer-based machine translation systems for industrial-scale text datasets in TensorFlow

- o Explored transfer learning strategies with unlabelled and cross-lingual data to improve model accuracy
- o Integrated FastText embeddings into core internal library to improve word representation quality

Technical skills

Programming: Python, PyTorch, Jax, Pandas, Numpy, Git, Bash, Figma AI/ML: Sequence modeling, representation learning, time-series, real-world data wrangling

Awards, fellowships, and other

2022-2024 Stanford Data Science Scholar. A prestigious PhD scholarship for \$60,000 support over two years 2019 1st place team at the Cornell Data Open data science competition hosted by Citadel, \$20,000 prize